Extra Precise Preconditioning for Non-Hermitian Eigenvalue Problems
نویسندگان
چکیده
منابع مشابه
Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems
Convergence results are provided for inexact inverse subspace iteration applied to the problem of finding the invariant subspace associated with a small number of eigenvalues of a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative solver. The costs of the inexact solves are measured by the number of inner iterations needed by the iterative solver at ea...
متن کاملChebyshev acceleration techniques for large complex non hermitian eigenvalue problems
The computation of a few eigenvalues and the corresponding eigenvectors of large complex non hermitian matrices arises in many applications in science and engineering such as magnetohydrodynamic or electromagnetism [6], where the eigenvalues of interest often belong to some region of the complex plane. If the size of the matrices is relatively small, then the problem can be solved by the standa...
متن کاملA Test Matrix Collection for Non-Hermitian Eigenvalue Problems
The primary purpose of this collection is to provide a testbed for the development of numerical algorithms for solving nonsymmetric eigenvalue problems. In addition, as with many other existing collections of test matrices, our goal includes providing an easy access to \practical" eigenproblems for researchers, educators and students in the community who are interested in the origins of large s...
متن کاملArnoldi-Faber method for large non hermitian eigenvalue problems
We propose a restarted Arnoldi’s method with Faber polynomials and discuss its use for computing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test problems, the benefit obtained from the Faber acceleration by comparing this method with the Chebyshev based acceleration. A comparison with the implicitly restarted Arnoldi method is also ...
متن کاملABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems
This work presents an adaptive block Lanczos method for large-scale non-Hermitian Eigenvalue problems (henceforth the ABLE method). The ABLE method is a block version of the non-Hermitian Lanczos algorithm. There are three innovations. First, an adaptive blocksize scheme cures (near) breakdown and adapts the blocksize to the order of multiple or clustered eigenvalues. Second, stopping criteria ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2006
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200610337